Generating signals with multiscale time irreversibility: The asymmetric weierstrass function
نویسندگان
چکیده
Time irreversibility (asymmetry with respect to time reversal) is an important property of many time series derived from processes in nature. Some time series (e.g., healthy heart rate dynamics) demonstrate even more complex, multiscale irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. Several indices to quantify multiscale asymmetry have been introduced. However, there has been no simple generator of model time series with "tunable" multiscale asymmetry to test such indices. We introduce an asymmetric Weierstrass function W(A) (constructed from asymmetric sawtooth functions instead of cosine waves) that can be used to construct time series with any given value of the multiscale asymmetry. We show that multiscale asymmetry appears to be independent of other multiscale complexity indices, such as fractal dimension and multiscale entropy. We further generalize the concept of multiscale asymmetry by introducing time-dependent (local) multiscale asymmetry and provide examples of such time series. The W(A) function combines two essential features of complex fluctuations, namely fractality (self-similarity) and irreversibility (multiscale time asymmetry); moreover, each of these features can be tuned independently. The proposed family of functions can be used to compare and refine multiscale measures of time series asymmetry.
منابع مشابه
The decay of multiscale signals – deterministic model of the Burgers turbulence
This work is devoted to the study of the decay of multiscale deterministic solutions of the unforced Burgers’ equation in the limit of vanishing viscosity. It is well known that Burgers turbulence with a power law energy spectrum E0(k) ∼ |k| has a self-similar regime of evolution. For n < 1 this regime is characterised by an integral scale L(t) ∼ t2/(3+n), which increases with the time due to t...
متن کاملA comprehensive model using modified Zeeman model for generating ECG signals
Developing a mathematical model for the artificial generation of electrocardiogram (ECG) signals is a subject that has been widely investigated. One of its uses is for the assessment of diagnostic ECG signal processing devices. So the model should have the capability of producing a wide range of ECG signals, with all the nuances that reflect the sickness to which humans are prone, and this ...
متن کاملMultiscale analysis of heart rate dynamics: entropy and time irreversibility measures.
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key fin...
متن کاملGenerating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients
Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...
متن کاملTime-Shift Multiscale Entropy Analysis of Physiological Signals
Abstract: Measures of predictability in physiological signals using entropy measures have been widely applied in many areas of research. Multiscale entropy expresses different levels of either approximate entropy or sample entropy by means of multiple factors for generating multiple time series, enabling the capture of more useful information than using a scalar value produced by the two entrop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Complexity
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2011